
MySQL Backup and Security

Best practices on how to run
MySQL on Linux in a secure way

Lenz Grimmer <lenz@mysql.com>

mailto:lenz@mysql.com

 2

Introduction

In this session you will learn best practises on how to
configure and run MySQL on Linux in a secure way.
It will give an overview about the security
mechanisms built into MySQL and how they can be
improved and accompanied by security
mechanisms provided by the Linux Operating
system.

In addition to to improving the security of a MySQL
installation, several MySQL backup
possibilities/tools and strategies for Linux are
discussed.

 3

Session content

• Improving MySQL Security
• On the MySQL server level
• One the Linux OS level

• MySQL backup methods
• Physical vs. logical backup
• OSS tools suitable for backup purposes
• Commercial backup solutions

 4

Improving MySQL security

• Securing MySQL is an essential part of the
post-installation process

• While the default installation is pretty
secure by itself already, some additional
steps have to be performed

• In addition to the facilities provided by
MySQL itself, make use of additional
security features provided by the OS

 5

MySQL Server post-installation

• Make sure to set a password for the root account
• $ mysql u root mysql
• mysql> SET PASSWORD FOR

root@localhost=PASSWORD('new_password');
• Remove the anonymous account or assign a

password to it
• Remove the test database, if you don't need it
• All the above steps can be performed by running the

mysql_secure_installation script included in
the Unix distributions

 6

Access Control Check

• Connect
• When a user connects the server checks in

the user table to see if it can find a matching
entry for the username, host and password

• Query
• When a query is executed the server checks

the user, db, tables_priv and
column_privs tables

 7

Query Access Control
Do you have sufficient privileges to execute the query?

Query

true

false

db

true

Query
executed

Permission
denied

false

columns_priv

false

tables_priv

false

user

true

true

 8

MySQL Server security hints
• Use the bindaddress option in my.cfg to bind

the TCP port to a specific interface (e.g. 127.0.0.1)
• Consider the skipnetworking option, which

only allows connections via the local socket file
• Allow access from selected hosts only
• Restrict access to the mysql.user table to the

root user
• Learn how to use the SHOW GRANTS, SET

PASSWORD and GRANT/REVOKE statements
• Or use phpMyAdmin or MySQL Administrator

 9

MySQL Server security hints
• Restrict PROCESS/SUPER/FILE privileges to a

minimum
• Do not store any plain-text passwords in your

database. Instead, use MD5(), SHA1() or some
other one-way hashing function.

• Disable LOAD DATA LOCAL by setting local
infile=0 in my.cnf

• Always use a non-privileged account to run
mysqld

 10

MySQL Server security hints

• For the paranoid:
• replace the root account with a different,

harder to guess one to avoid brute-force
dictionary attacks

• make sure to remove or clean up the history
file of the mysql command line client, if you
used it to edit or add user accounts/passwords
on the command line

 11

Views and Stored Procedures

• Views can be used to restrict access to
certain columns of tables

• Stored Procedures can be used to shield
the tables from being accessed by the
user/application directly

• Plug: Now available in MySQL 5.0!

 12

OS Level security

• Using MySQL on Linux adds a few more
options to improve the security of running
MySQL
• Improving access restrictions
• Reducing security risks
• Securing data and communication

 13

Improving access restrictions
• Lock down the permissions on the data directory with

chown and chmod
• users won’t corrupt table data
• users won’t see data they aren’t supposed to see

• The log files must also be kept secure:
• users might again see data they aren’t supposed to

see
• queries such as GRANT are stored in the logfiles,

anyone with log file access could then obtain user
passwords

• Don't allow normal user logins on the DB server

 14

Reducing security risks

• Use iptables to firewall the server
• Run MySQL in a chroot() jail
• Enable SELinux or Novell AppArmor
• Run the MySQL server in a virtual machine

• Xen
• UML (User Mode Linux)
• VMware

 15

Securing data and communication

• Encrypt network traffic
• OpenSSL
• SSH tunnel
• OpenVPN
• Cipe

• Encrypt the data directory
• cryptoloop devices
• dm-crypt

 16

Backing up MySQL data
• When do you need backups?
• What needs to be backed up?
• How can backups be performed?

 17

When Do You Need Backups?
• Hardware failure

• When a system crash occurs some of the data in
the databases may be lost

• A hard-disk failure will most certainly lead to lost
data

• User failure
• A user may issue DROP TABLE or DELETE

FROM statements that he or she later regrets
• Someone (an administrator?) might try to edit the

table files with text editors, usually leading to
corrupt tables

 18

What needs to be backed up?

• Database content
• for full backups
• logical or physical backup

• Log files
• for incremental backups
• point-in-time recovery

 19

The Data Directory
• By default all databases as well as most log and

status files are stored in the data directory
• A default data directory is compiled into the server

• /usr/local/mysql/data/ (tarball)
• /var/lib/mysql (RPM)

• The data directory location can be specified during
server startup with datadir=/your/path/

• If you don’t know the location of the data directory
you can find it out with:
• mysql> SHOW VARIABLES like 'data%';

 20

The Binary Log
• Contains all SQL commands that actually change data
• Also contains additional information on each query

e.g. query execution time
• The binary log is not stored in text format, it is stored in a

more efficient binary format
• You must use mysqlbinlog to access the log contents
• Turned on with logbin[=file_name]
• The update logs are created in sequence

e.g. file_namebin.001, file_namebin.002, etc.
• The binary log is compatible with transactions
• mysqld creates a binary log index file which contains the

names of the binary log files used

 21

Managing The Binary Log
● The purpose of the Binary Log is to

● Ease crash recovery
● Enable replication

● SHOW MASTER LOGS shows all binary log files
residing on the server

● With FLUSH LOGS or when restarting the server
a new file is used

● RESET MASTER deletes all binary log files
● PURGE MASTER deletes all binary log files up to

a certain point

 22

The Error Log
• When the server is started with mysqld_safe all the

error messages are directed to the error log
• The log contains info on when mysqld was started

and stopped as well as errors found when running

$ cat /var/log/mysql.err
000929 15:29:45 mysqld started
/usr/sbin/mysqld: ready for connections
000929 15:31:15 Aborted connection 1 to db: 'unconnected'
user: 'root' host: `localhost' (Got an error writing communication

packets)
000929 15:31:15 /usr/local/mysql/bin/mysqld: Normal shutdown

000929 15:31:15 /usr/local/mysql/bin/mysqld: Shutdown Complete

000929 15:31:54 mysqld started
/usr/sbin/mysqld: ready for connections

 23

MySQL backup methods
• SQL-level backup (logical backup)

• mysqldump
• Backup table files directly (physical backup)

• BACKUP TABLE
• mysqlhotcopy
• Other OSS tools
• Using LVM snapshots

• Setting up replication
• Commercial backup tools

 24

mysqldump
● mysqldump dumps the table structure and data into SQL

statements, which can be saved in files
● $ mysqldump mydb > mydb.20050925.sql

● You can dump individual tables or whole databases
● The default output from mysqldump consists of SQL

statements, CREATE TABLE statements for table
structure and INSERT statements for the data

● mysqldump can also be used directly as input into
another mysqld server (without creating any files)
● $ mysqldump opt world | mysql
hwork.mysql.com world

 25

Recovering With Backups
Recovered database = Backup files + binary log

• In order to restore the tables to the state before a
crash you will need both your backup files and the
binary log
• From the backup files you can restore the tables to the

state they were at the time of the backup
• From your synchronised binary logs you can extract

the queries issued between the backup and now
• Beware, if you are recovering data lost due to

unwise queries remember not to issue them again

 26

Example SQL level restore

• Restore the last full backup

mysql < backup.sql

• apply all incremental changes done after
the last full backup

mysqlbinlog hostnamebin.000001 | mysql

 27

MySQL table files backup

• Also called “physical” backup
• Database files can be simply be copied

after issuing FLUSH TABLES WITH READ
LOCK;

• The mysqlhotcopy Perl script automates
this process (MyISAM table files only)

• Locking all tables for consistency can be
expensive, if the file backup operation
takes a long time

 28

mysqlhotcopy
● mysqlhotcopy is a Perl script with which you can easily

backup databases
● It can only be run on the same machine as where the

databases are
● It does the following

● LOCK TABLES
● FLUSH TABLES
● Copies the table files to the desired location with cp or
scp

● UNLOCK TABLES
● The user has to have write access to the target directory

 29

Backing Up InnoDB Databases
• You can use the mysqldump single transaction

tool to make an on-line backup
• To take a ’binary’ backup, do the following:

1. Shutdown the MySQL server
2. Copy your data files, InnoDB log files, .frm files and

my.cnf file(s) to a safe location

3. Restart the server

• It is a good idea to backup with mysqldump also, since
an error might occur in a binary file without you noticing
it

 30

OSS backup tools

• The usual suspects: cp, tar, cpio, gzip,
zip called in a shell script via a cron job

• Use rsync or unison for bandwidth-
friendly remote backups

• Complete network-based backup solutions
like afbackup, Amanda or Bacula provide
more sophisticated features (e.g. catalogs)

 31

Linux backup support

• LVM snapshots
• DRBD (“RAID1 over the network”)
• Distributed file systems

• GFS
• Lustre

 32

Backup using LVM snapshots

• Linux LVM snapshots provide a very
convenient and fast backup solution for
backing up entire databases without
disruption

• The snapshot volume does not need to be
very large (10-15% are sufficient in a
typical scenario)

• A backup of the files from the snapshot
volume can be performed with any tool

 33

Linux LVM snapshot creation

Basic principle:

mysql> FLUSH TABLES WITH READ LOCK

$ lvcreate -s –-size=<size> --name=backup <LV>

mysql> UNLOCK TABLES

$ mount /dev/<VG>/backup /mnt

$ tar czvf backup.tar.gz /mnt/*

$ umount /mnt

$ lvremove /dev/<VG>/backup

 34

MySQL replication
• backing up a replication slave is less time-critical

(the master is not blocked for updates)
• Keep the limitations of MySQL replication in mind
• make sure to back up the master.info and
relay-log.info files as well as any
SQL_LOAD-* files (if LOAD DATA INFILE is
replicated)

 35

Commercial backup solutions
• Acronis True Image
• ARCServe
• Arkeia
• InnoDB HotBackup
• SEP sesam
• Veritas vxfs snapshots

 36

Backup Method Comparison

• The output from mysqldump is portable to any
other DBMS (without the opt option) whereas
the copied files only work with MySQL

• The file copying methods are much faster than
mysqldump

• So it comes down to your preferences:
– Which tool do you prefer to use
– Speed vs. portability

 37

• Perform backups regularly
• Turn on the binary update log

• The update logs are needed to restore the database
without losing any data

• Synchronise your update log files with your backup files
• Use FLUSH LOGS

• Name your backups consistently and understandably
• Include the date in the file name mydb.20050925.sql

• Store your backups on a different file system than where
your databases are

• Backup your backup files with file system backups

Backup Principles

 38

General backup notes
• Putting the binary logs on a different file system

(or even a different drive) than the data directory
is recommended (increases performance and
avoids data loss)

• Make sure the backup is consistent and
complete!

• Define backup schedules and policies as well
as recovery procedures

• Test that these actually work!

 39

Thank you!

Questions, Comments?
Lenz Grimmer <lenz@mysql.com>

mailto:lenz@mysql.com

